
HP
Laboratories
Technical
Report

Hamlyn: a high-performance network interface
with sender-based memory management

Greg Buzzard, David Jacobson,
Scott Marovich and John Wilkes

Computer Systems Laboratory
Hewlett-Packard Laboratories, Palo Alto, CA

HPL–95–86
July 1995

© Copyright Hewlett-Packard Company, 1995. All rights reserved.

This paper appears in the proceedings of the Hot Interconnects III
Symposium, Stanford University, Palo Alto, CA, 10–12 August 1995.

• automatic message reassembly even if packets arrive
out of order, which allows use of adaptive-routing
networks having greater throughput and fault-
tolerance;

• simple design: the interface can be implemented
directly in hardware state machines for speed;

• protection against node failures and rogue messages:
eliminates need for per-message software checks;

• a rich set of message-delivery notification schemes gives
applications choices between minimizing latency
and maximizing functionality.

The first Hamlyn design incorporated most of these
features [Wilkes92]. It was developed as a way to
integrate a fast, packet-switched interconnect, known as
FedEx,1 which supported adaptive routing into a large-
scale MIMD multicomputer. This work expands on that
design by:

• reporting performance data from software and
hardware prototypes;

• extending the schemes available for notification of
message arrival;

• extending the original packet-counting scheme to a
more powerful one that supports generalized
group-receive semantics;

• presenting low-level protocols that sit atop the
hardware interface.

Hamlyn was designed with a RISC-like philosophy:
make the common cases fast, and the less common ones

1. FedEx was the successor to the PostOffice switching chip developed
by the HP Labs Mayfly project [Davis92].

1 Introduction
Processors are getting faster quickly, and message-
passing interconnects for multicomputers are doing the
same, thanks to developments in Gb/s links and low-
latency switching fabrics. But published papers about
state-of-the art multicomputers continue to discuss
application-to-application message times that are
typically measured in hundreds of microseconds. It
seems that moving bits back and forth between
processors and interconnects continues to be a
performance bottleneck.
Hamlyn is an architecture for processor-interconnect
interfaces that addresses this difficulty. It has several
important features:

• sender-based memory management: the sender never
sends unless it knows that there is space at the
receiver, which eliminates costly receiver buffer-
overruns and the need to retry sends under high
load;

• direct application access to the interface hardware:
eliminates the need for operating system (OS)
intervention in send and receive operations, giving
very low latencies;

• zero-copy protocols: data are read directly from and
written directly to their end-points in application
space, with no intervening memory-to-memory
copy and no need for page alignment or remapping
by the OS;

• full inter-application protection: allows many
applications to use the same interface concurrently
without having to trust one another;

Hamlyn: a high-performance network
interface with sender-based memory
management
Greg Buzzard, David Jacobson,
Scott Marovich, and John Wilkes
Computer Systems Laboratory,
Hewlett-Packard Laboratories, Palo Alto, CA
The Hamlyn architecture for fast processor-interconnect interfaces uses sender-based memory management to eliminate
receiver buffer over-runs, and a combination of protection algorithms that allows untrusting applications direct, concurrent
access to the interface hardware, with full protection between them.

We report here on some advances in the Hamlyn design since our original paper,. We also give detailed performance information
for both a prototype of the interface itself using the Myrinet interface from Myricom, and for a software protocol layer that sits
atop the hardware interface. We show that Hamlyn performance is comparable to aggressive implementations of Active
Messages on the CM-5, but Hamlyn also adds protection between applications and against faulty processors. Our analysis
shows that if the interface were constructed as a set of hardware state machines, its performance would be limited almost solely
by host bus and link speeds.

2

possible. An explicit design goal was that Hamlyn be
simple enough to implement directly in hardware state-
machines, so that it would not require a programmable
controller, since these are often performance bottlenecks.
The Hamlyn design is being prototyped in hardware
and software as this paper is being written. This paper
presents an overview of its architecture, discusses the
design and implementation of the low-level interface
library that we have constructed on top of it, and
presents performance data for our approach,
demonstrating its advantages. We also discuss related
work before summarizing what we’ve learned from our
research.

2 The Hamlyn architecture
We begin with an overview of the Hamlyn architecture
proper.

2.1 Assumptions and requirements
The architecture was designed for closely-clustered
computers or MIMD multicomputers. Our main goal was
to reduce the end-to-end latency and overhead of
communications while providing a choice of message-
arrival semantics. We began by identifying desirable
properties of interconnects used in such environments
that we could exploit, including:

• Very low transient error rates: dedicated, enclosed
multicomputer networks are better thought of as
extended backplanes than as high-error-rate
network links. This meant that we could rely on
application-level recovery mechanisms for the very
few cases where things actually did go wrong. In
particular, retry mechanisms in the low-level
protocols to gain efficiency were no longer needed
[Saltzer84], and a sender may discard its copy of a
message as soon as it has moved into the
interconnect.

• Relatively small packets, which permit simpler, faster
switches and better throughput guarantees; in turn,
this implied the need for message segmentation and
reassembly. (Hamlyn would also work with
interfaces that don’t do packetization.)

• Possible out-of-order packet delivery, since this allows
low-level packet-routing optimizations, such as
adaptive routing, to get higher effective bandwidth
with automatic hot-spot and fault-avoidance.

• The interconnect would never partition: the
combination of low failure rates and internal
redundancy in the interconnect meant that we could
simply declare that partitioning had been legislated
out of existence.

• A physically secure network, so that messages would
not need to be encrypted. A few bad packets might
still be generated by a failing processor as it went
down, so we did need a mechanism to handle short-
lived bursts of erroneous messages. Because we also

assumed that individual nodes would run a trusted
OS, which would prevent the most egregious
security violations, we did not need other protection
against sustained, malicious attacks.

To provide really low latency, we felt that it was essential
to: (1) provide direct, application-level access to the
interface hardware; (2) eliminate memory-to-memory
data copying (“zero copy” protocol stacks); and (3)
provide a fast, low-cost mechanism to notify application
processes when one or more messages had arrived,
rather than do so on every packet or message-fragment.
To provide high bandwidth, we needed to integrate direct
memory access (DMA) capabilities into the interface,
while still allowing applications direct access to it.
In addition, because we were interested in supporting a
general-purpose computing system on our
multicomputer, we felt that it was imperative to give
several, mutually suspicious applications access to the
interconnect interface simultaneously, at full speed. This
requirement rules out approaches like partitioning the
multicomputer, draining the interconnect during
program-switches as is done on the CM-5, or requiring
gang-scheduling of applications, as in Active Messages.
The same reasoning led us to minimize the need for
polling the interface hardware.
The Hamlyn interface architecture embodies solutions
to all of these problems.

2.2 Sender-based memory management
The first—and perhaps most important—Hamlyn
feature is sender-based memory management.
Receiver buffer-overruns are a serious problem for low-
latency computer systems: resolving them typically
requires time-out mechanisms in order to trigger a retry,
often at a relatively low level in the protocol stack. Of
course, this usually occurs under high load conditions—
precisely when such retransmissions will only make the
problem worse. In a packet-based environment, even a
low rate of packet loss can result in a much higher rate of
message loss.
The basic idea behind sender-based memory
management is that if the sender has responsibility for
laying out messages in the receiver’s memory, then there
is never a reason to experience a receiver buffer-overrun.
Hamlyn achieves this by letting senders dictate where in
the receiver’s memory a message should be placed. The
interface puts message packets directly into this
managed space, rather than buffering them on a limited-
capacity interface card. Hardware delivery is needed
because the cost of software packet-handling at the
receiver is precisely the problem causing receiver
overruns.
In order to decouple the sender’s and receiver’s virtual-
to-physical address mappings, Hamlyn provides a level
of indirection: each sender is given one or more message

3

areas—logically contiguous pieces of memory—into
which it can direct messages. Message areas are
allocated by the receiver so that the latter retains overall
resource control. These areas are mapped directly into
receiving applications’ address spaces so that incoming
messages arrive without copying.
To make this possible, each message is labeled with a
destination <message-area, offset> pair. If the message
must be segmented into packets for transmission, then
each packet must include a <message-area, offset> pair.2

Message areas are allocated from the processor’s main
memory, and they are protected by standard hardware
page-protection schemes. Thus, there is no application
cost to access their contents, and all accesses are subject
to the usual protection checks. Each message area is
described by a vector of physical page addresses; the
Hamlyn interface interprets offsets into the message area
as offsets into this vector, and it performs the required
address calculations “on the fly” as it writes packets into
the receiving processor’s memory.3

To ensure that senders cannot randomly write to
message areas without permission, the sender puts a
protection key into outgoing packets, and the receiving
hardware checks it against a key associated with the
message area. Only if the keys match is writing allowed.
Since keys are large (32 or 64 bits) and sparsely allocated,
this provides full inter-application protection: an
application can only write to message areas for which it
has been given permission in the form of a key.

2.3 Termini: direct access to the interface hardware
To avoid OS overhead at the sender, Hamlyn gives each
sending application a private, hardware send terminus.
This is a set of registers and a work queue that are
mapped into the application’s address space using
normal OS virtual-memory protection mechanisms. The
application can read and write its terminus to provoke
message-sends without further OS intervention: no
system call or interrupt occurs when sending a message.
Short messages are pushed from the host processor onto
the terminus queue using regular store instructions: no
additional protection checks are needed. We call this
direct I/O. The terminus is then “prodded” to examine the
queue if it wasn’t already doing so, after which the
application may proceed to other work. If the terminus
queue is full, the processor spin-waits for a few
microseconds until a message has been sent and there is
space to insert its new request. Each terminus has its
own queue so that each application may have several
messages queued for transmitting—64 in our prototype.

2. This restriction could be lifted if the interconnect were to provide
completely loss-free, in-order delivery.

3. In the original Hamlyn proposal, the interface held an explicit page-
address vector. In the prototype, this address conversion was folded
into the bus converter that was part of the host processor’s I/O
system.

Long messages may be sent by an asynchronous DMA
mechanism built into the interface, which frees up the
processor for other activity. To do this, a DMA request
block is constructed and put onto the terminus work
queue. A DMA request resembles a direct I/O request,
except that in-line data are replaced by a pointer and
length.
If an application could put an arbitrary memory address
in a DMA request, then it could send any part of its node’s
memory across the network, which would clearly be a
security violation. We prevent this by making the sender
specify outgoing DMA messages in terms of a <message-
area, offset, length> tuple, which the interface checks
against a list of message areas stored in the sending
terminus, translating addresses as the data are
transmitted.
The Hamlyn interface scans round-robin around the
termini with outstanding sends, transmitting a packet
from each one in turn. This provides fairness amongst
applications, even if some are sending long messages
and others short ones. Indeed, the effect is to give short
messages preferential access to the interconnect. This in
turn increases the likelihood that short control requests
will be sent with low latency.
This scheme could be embellished with priorities,
although we didn’t include this in our prototype: if
sending termini have associated priorities, then the
interface can service higher-priority termini before
lower-priority ones.

2.4 Slots: sharing message areas
We wanted to make it possible to share receiver message
areas amongst many senders (e.g., the collaborating
processes of a distributed application). To do so, we
introduced slots, which have two functions. A slot has a
base-limit pair, identifying some or all of a message area,
and it holds a protection key used to guard against
misdirected or unauthorized messages. Multiple
senders may share all or part of a given message area,
and this permission can be revoked on a per-sender
basis if each sender is given a separate slot. Figure 1 puts
this all together.
Our packet protocol can address 216 slots in an interface.
The Hamlyn architecture allows the interface hardware
to store slot information in its entirety, or to cache
information for a subset of slots. Both the number of
slots supported and how they are stored are
implementation choices, hidden from the controlling
software, so that the cost and complexity of a Hamlyn
implementation can be adjusted to meet resource limits
or price goals. For example, our prototype supported
about a thousand slots.

2.5 Message reassembly and arrival notification
Packets of a segmented message may arrive at the
receiving hardware in any order. The incoming message
data are moved directly to the desired spot in the user

4

space via DMA: no staging through an OS buffer occurs,
so no copying is needed. We refer to this design as a zero-
copy protocol.
Once all the packets of a message have arrived, the
receiving application should be told. We call this process
message-notification. A unique aspect of Hamlyn is its
flexible notification scheme, which has three parts:

• Hamlyn hardware automatically detects when all of
the packets of a message, or a group of messages,
have arrived—without any software intervention by
the receiver.

• Once a message has arrived, the hardware writes an
entry into a notification queue. (By default, there is
one queue for each application process.)

• An interrupt is generated only if the receiving
process is asleep, and even then, interrupts are
coalesced when possible to minimize overheads.

The mechanism for generating a notification is based on
an extended form of packet-counting.
Each sending terminus has a 32-bit packet counter that
can be initialized by the sending application to some
value Y0.
At the receiver, each application has a pool of notification
assembly areas. Each contains a 32-bit counter, space used
by higher-level protocols for out-of-band data, and
(optionally) additional protection information. A
notification area can be recycled as soon as the receiver
does a release operation on the associated buffer, so the
number of areas needed is the number of messages
potentially in flight at one time, not the total number
sent. The counter is called a notification assembly counter,
and it is always initialized to zero.
Each arriving packet carries an integer value in a field of
its header called the delta field, and the index of a
notification assembly area. In each outgoing packet

Figure 1 : processing an incoming packet: checking the header
to find where to put data.

Hamlyn
interface

Message
area

Protection
key

Slot

Incoming
packets

Accessible
 subset of
message

area

except the last, the packet's delta field is set to 1 and the
packet counter is decremented. In the last packet, the
current value of the packet counter is put in the delta
field. Each step leaves the sum of the packet counter and
the deltas invariant, so that the sum of the delta fields of
all the packets equals Y0 modulo 232.
As the packets of a message arrive, their delta fields are
summed into a notification assembly counter. A
notification is generated when the counter again
becomes zero, which can occur only if the sum of the
incoming packets’ delta fields is 0 modulo 232.
This deceptively simple mechanism provides:
Message reassembly. The problem here is that packets
may arrive in a different order than they were sent. To
handle this, the sender lets Y0 = 0. If there is only one
packet, its delta field will be zero and notification will
occur on its arrival. If there is more than one packet, then
all but the last packet have delta=1,while the last will
have delta = –(p–1), where p is the number of packets in
the message. Notification will occur when all the packets
have arrived, even if the packets arrive out of order.
Static group receive. A single notification can be
delivered after a set of messages from a known list of
senders has arrived (e.g., for a barrier). In this case, the
ith sender is given an initial value Yi such that the sum
over all participating senders is 232. As the last-sent
packet from each sender arrives, it cancels the packet-
count from the other packets from the same sender, and
contributes Yi to the packet accumulator. The sum
reaches 232 and wraps around to zero exactly when all
packets have arrived.
Single-sender scatter-gather. One sender may send
several related messages and have the receiver be
notified only when all of them have arrived. An example
is: sending data to one area and a control message to
another area. Because the interconnect may deliver
messages out of order, a control message could overtake
its associated data and arrive before it. This usage is just
a special case of a static group receive in which each
scatter-gather area is a separate message, but all come
from the same sender.
Dynamic group receive. This is similar to static group
receive except that the set of senders is initially
unknown—in fact, no node may ever know the set’s
entire composition. An example occurs in database
systems where one process delegates work to other
processes. Here, a process that has received a value Yi for
its send counter can delegate work to (say) two other
processes as long as their initial send-counter values, Yi1
and Yi2, sum to Yi. For correct operation, the senders
must also partition the receiver’s buffer area between
them, and there must be a means by which the receiving
application knows where to find the data.

5

2.6 Summary
The primary costs of the Hamlyn scheme are two-fold:

1. Message areas must be pinned in memory. We made
a deliberate choice to do this: it buys considerable
performance with a small amount of memory, which
is becoming cheaper by the day. Besides, low-
latency communication won’t much help an
application that has its active data paged out ….

2. Each message or packet must include some
Hamlyn-specific header data. This bounds the
smallest sensible packet size to a hundred bytes or
so. We don’t think that this is a major restriction:
Hamlyn was originally designed for a packet-
switching network with 128-byte packets, which
seems a reasonable compromise for interconnects of
this sort. For comparison, FibreChannel uses packet
sizes in the 2KB range, and the Myricom network we
are using for a prototype does not limit packet size.

In return for these, Hamlyn provides fully-protected,
direct application access to the interconnect; message
reassembly “for free,” including the cases of multiple
messages and multiple senders; protection against rogue
messages and failing processors; and both direct and
DMA sends. The next section discusses how all of this
provides higher-level communication facilities while
preserving performance and simplicity of the low-level
hardware.

3 Rats—an interface library for Hamlyn
An interface library called Rats has been designed to
support the rapid development of middleware code—
such as MPI [Corbett95], Active Messages [vonEicken92],
distributed database facilities—and other applications
that are tuned for the Hamlyn architecture. The goal of
Rats was to provide a thin layer of useful abstractions
with which to manage Hamlyn resources, and to send
and receive messages efficiently.
To use Hamlyn, a sender must manage space on the
receiver into which the messages are delivered, space
into which out-of-band data is deposited, and a
notification queue. The way these resources are
managed varies according to the communication
scheme being used. For example, streaming a sequence
of records requires that the receiver’s notification queue
and message area are not overrun, whereas updating a
remote location with status information (e.g., the
processor load average) may not need to generate
notifications and message-area overrun is not a concern.
Rats was designed to support a variety of protocols
while isolating the programmer from the details of the
hardware interface.
Rats was implemented in C++. It defines a collection of
Hamlyn resource classes and member functions for
operating on them. Rats code executes in the
application’s address space and invokes the OS only to
acquire or release communication slots and termini—

which occurs much less often than sending or receiving
messages. Sending a message need never involve the
OS; receiving one only does so to awaken a sleeping
process that has blocked itself inside the OS.
Rats has two layers: one is concerned with the details of
the Hamlyn hardware interface, the other with offering
different communication abstractions. We discuss each
of these in turn.

3.1 The Rats hardware interface level
The lower level of Rats provides a procedural, user
library interface to the Hamlyn hardware and hardware-
manipulated data structures. There are two main
functions: sendmsg and get_notification_record.
The sendmsg function accepts a ticket and a buffer, then
launches a message. The ticket specifies a destination
node, slot, notification assembly area, protection key,
offset, and range. The buffer’s virtual address is
converted to an offset from the beginning of the sender’s
message area. If the message is small, it is written
directly into the interface using direct I/O. If it is large, a
DMA control block is constructed and queued in the
interface. The value returned by this function is a handle
that can be used to determine the status of the send.
The get_notification_record function returns a pointer to
the next notification entry, or zero if there isn’t one.
Other lower-level functions communicate with the OS to
allocate slots, allocate pinned memory, set protection
keys, prepare information needed to wake a sleeping
process upon message arrival, and so on.

3.2 The Rats higher-level protocols
The upper level of Rats consists of a Hamlyn interface
manager and a collection of protocol modules that
provide routines to send and receive data. The manager
administers pinned memory using a malloc/free
paradigm, and it allocates notification areas associated
with slots owned by the application process.
The upper level of Rats supports the notion of a protocol
instance—one instantiation of a protocol for a particular
application process with a server and a client side.
(These are treated a bit like UNIX4 file descriptors.) Rats
exports two functions that together resemble the UNIX
select call: next_ready determines which protocol
instance has data ready, if any, and poll blocks until there
is data for one of the application’s protocol instances, at
which point it calls the instance’s process_arrival
function. (See below.)
Implementing the upper level in C++ provided name-
space control (each module can have its own send, recv,
close, etc. calls without name conflicts), in-line function
expansion and abstract data types. All of the modules
have similar interfaces, so that most of what a
programmer knows about one applies to all.
4. UNIX is a trademark licensed exclusively by X/Open Corporation in

the USA and other countries.

6

A novel feature of the protocol modules is how users
establish connections. We wanted to avoid depending
on a global distributed operating system, whose
instances on the nodes would have to cooperate to
establish connections. For most protocols, an application
first creates a server (more strictly: server instance),
which is usually the receiver of data. Each server
supports a make_seed call that returns a seed, which is a
data structure that encapsulates all the information
necessary to send a message to that server—its site, slot,
protection key, and any protocol-specific information. A
seed can be communicated to another node using any
available mechanism. A remote application calls the
C++ constructor for the client side of the protocol,
passing the seed as a parameter. This constructor sets up
any necessary framework for normal operations, and
contacts its server if necessary. Seeds are often
communicated as metadata with a message: this is a small
amount out-of-band data written separately from the
main message at the recipient.
Except to awaken a sleeping process, message reception
runs entirely at user level. The poll function calls
get_notification_record in order to get information about
the next incoming message or message group, then it
identifies the associated server and calls a (C++ virtual)
process_arrival function, which is provided by every
server to handle the incoming data in a protocol-specific
manner. Where needed, the recv operation returns a
handle that can be used to find the message and to
release the buffer.
Sending functions and the stream protocol’s flush call
return a handle so that the application can query the
status of the send operation. Possible status values are
error (and an error code), pending, copied, and sent.
Rats is modular and easily extensible: the tagged remote
write protocol, described below, is about 2 pages of C++
code. There are currently seven supported protocols:
Remote Write. The seed used to create a client carries a
ticket for the destination. The write call specifies a buffer,
length, and destination offset. The only thing to happen
at the receiving side is that data is written. In-order
delivery is not guaranteed; scatter-gather is supported.
Tagged Remote Write. The seed used to create a client
carries a ticket for the destination. The write call specifies
a buffer, length, destination offset, and an integer tag. At
the receiver, data is written to the destination message
area, and the tag is included in a notification queue
entry. Tags can be retrieved with a get_tag or
get_specific_tag call. All messages of this type must fit in
a single packet. (This and the Initial Request protocols
are the only ones with this restriction.) In-order delivery
is not guaranteed.
Datagram. This resembles UNIX’s UDP, except it is
reliable and the receiving application obtains a pointer
to the message, rather than supplying one. When the
application is finished with a buffer, it must explicitly

release it. Behind the scenes, the release function sends a
ticket back to the client so that the buffer can be reused.
This protocol can be many-to-one by creating multiple
seeds. As with UDP, in-order delivery is not guaranteed.
Simple datagram. This protocol differs from the
datagram protocol above in that each message carries a
seed for a reply; also, applications may send additional
out-of-band data of their own, use Hamlyn’s group
receive mechanisms, and specify where the buffer space
lies. The “simple” part of this protocol is that each
instance manages a single receive buffer, rather than
queues of several, which makes for a simple, efficient
protocol.
The seed used to create a client is simply a ticket. Seeds
can be split, which is the metaphor used to access group
receive functions. The split_seed function creates a new
seed and mutates the original in order to partition the
destination buffer into non-overlapping ranges. It also
makes the sum of delta values in the resulting seeds
equal to the old delta value (modulo 232), so that an
application receiving a split message will only be told
when all the messages from all the senders have arrived.
A client protocol exports send, which accepts a buffer
and a possibly null piece of metadata containing a reply
seed. An application calls recv at the server, which waits
for a message to arrive, and it can ask where data was
deposited. The function reply_seed returns the reply seed
sent in the message; metadata_for_self returns a pointer to
a piece of metadata containing a ticket for its own
instance. Thus, applications can ping-pong messages
back and forth using the following sequence at each end,
where srv is the server:

srv.reply_seed().send(sendbuffer,
sendbuffer + buffer_length,
srv.metadata_for_self())

The seed provides the send function in the call above to
avoid explicitly constructing and discarding a client
instance just for the reply.
Remote Read. Clients support remote_read and
async_remote_read. A ready function indicates whether
the async_remote_read has returned. Only one remote
read can be in flight at any time for a single protocol
instance.
Stream. This protocol provides a one-way, one-to-one,
in-order connection from a sender to a receiver. Either a
sender or a receiver can be created first. The make_seed
function for a sender or receiver returns a seed for the
opposite party.
The stream sender supports write_bytes, write_record, and
flush. The stream receiver supports read_bytes and
read_record; both return a <start-pointer, length> pair
describing their result: no copying occurs.
Any stream can be written or read as either bytes or
records, or these calls can be interleaved. A read_bytes
call returns as many bytes as there are left in the current
message, possibly crossing a record boundary. A

7

read_record call returns one record (as sent by
write_record), or the remainder of the current message if
it contains no more record boundaries.
Large buffers are sent as-is; small ones may be coalesced
by copying, in which case the returned handle’s state
will be the value copied and there is no guarantee of
immediate transmission. Transmission can be ensured
by a call to flush, which guarantees that all previously-
copied data are transmitted. A release operation on a
buffer frees its memory space and that of all buffers that
arrived earlier.
Initial request response. This protocol is designed to be
used for initial connection requests where there are no
pre-allocated resources at the server. The client seed is an
ASCII string, so it can be passed by some simple out-of-
band process, such as being written in a file (similar to
/etc/services), passed in an environment variable, put in a
command-line argument., hard-coded into programs or
distributed by a name server. The client does a send, the
server gets it with a recv, it replies with sendreply, and the
client receives that with recvreply. Since there are no pre-
allocated resources, a transmission may arrive when the
designated resource is busy and be lost, so the protocol
uses time-out, retransmission, timestamps and sequence
numbers to synthesize reliability. Applications must
explicitly call release when they are done with the reply
buffer.

4 Performance evaluation
To evaluate the design alternatives for Hamlyn, we
undertook several different activities:

• a software emulator for the low-level hardware
interface let us experiment with the Rats protocols
before the hardware was ready;

• a prototype hardware implementation using the
Myrinet interconnect [Boden95] let us try out the
effects of the Hamlyn ideas in a near-full-speed
prototype (this was built in cooperation with the
University of California, Berkeley; see Figure 2);

Figure 2 : the structure of our prototype interface.

Host I/O
bus Slot

table
Work

queues

Host
DMA
engine

to interconnect

Link DMA
engines

LANai controller

Packet
staging
area

Interface
SRAM

• ports of several large applications on top of the Rats
software to learn how well they are supported by its
interfaces.

Together, these allowed us to answer a range of
questions. We continue to use them to explore which
parts of the Hamlyn architecture bring value to
applications, and which parts can be elided or delegated
to software. This section presents an overview of some of
these activities, and discusses performance data that we
have obtained from them.

4.1 The software interface emulator
We built a software emulator of the Hamlyn hardware
interface in order to help us develop the Rats interface
library. We instrumented it to measure a number of
small test programs. Because the emulator ran directly
on PA-RISC hardware, we were able to determine precise
instruction counts and timings for the Rats software
layers.
Instruction counts we report here were obtained by
disassembling compiler output. We measured the
cycles-per-instruction value for an HP9000 Series J200
processor to be 1.27 when executing the sendmsg code,
with the cache and TLB hot. Combining this with the
processor clock speed of 120MHz gave us timings.
Table 1 shows instruction counts for a tagged remote
write of d data bytes; Table 2 shows them for simple
datagrams. A datagram can be sent with reply
information (which needs 44 bytes of metadata), or
without (which needs only 12). The table shows timings
for a 16-byte message sent with and without reply data.
Note that DMA costs are independent of message size at
the Rats level.
The tables should be read as follows: the column
labelled on-cp (on the critical path) gives the latency of
the operation. The time the host processor is busy is
given by the sum of on-cp and off-cp values: the latter
represents work that can be overlapped with
interconnect activity.
The tables indicate that Rats contributes about 1.6µs to
the critical path of a tagged remote write (send + receive)
of 16 data bytes, and 1.7µs for a 512-byte DMA. In the case
of a simple datagram that includes the information
needed for a quick reply, the values are 2.2µs (2.3µs for
DMA)—a total of 4.4µs (4.6µs) of software costs for the
round trip.
[Karamcheti94] reports instruction-counts (but no times)
for Active Messages on a CM-5 (CMAM) that are roughly
comparable with ours, although they were measured on
a SPARC processor, ours are for PA-RISC. The CMAM finite-
sequence, multi-packet delivery protocol seems to
provide functionality somewhat below our simple
datagram protocol, in that it doesn’t support our group-
receive operations, but does handle out-of-order packet
delivery. [Karamcheti94] quotes 397 instructions to do a
16-word (64-byte) unidirectional send: our value is 215

8

instructions using direct I/O, 188 using DMA. It is not
clear from [Karamcheti94] how this count scales if the
packet size increases to 32 bytes: our increases by 12
instructions in the direct I/O case, and doesn’t change
using DMA.
This comparison shows that Hamlyn is providing
essentially the same performance as a well-tuned
Active Message implementation, with the addition of
full inter-application protection and no receiver
overruns.

[Karamcheti94] argues that the underlying network
interconnect should provide in-order delivery, deadlock
freedom, and fault-tolerant packet transmission. We
conclude instead that Hamlyn can provide the first two
of these on top of an arbitrary interconnection network

Table 1 : instruction counts to do a tagged remote write of d
bytes in Rats. The notation on-cp means instructions on the
critical path; off-cp instructions off it.

Tagged remote write — Direct I/O — — DMA —

function on-cp off-cp on-cp off-cp

sender

tagged_write::write 10 6 10 6

sendmsg 69+3d/4 17 88 13

total 79+3d/4 23 98 19

16-byte msg total 0.96 µs 0.24µs 1.03µs 0.20µs

receiver

poll 31 4 31 4

process_arrival 16 16

get_tag 15 20 15 20

total 62 24 62 24

16-byte msg total 0.66 µs 0.24µs 0.66µs 0.25µs

both
 total 141+3d/4 47 160 43

16-byte msg total 1.63 µs 0.48µs 1.69µs 0.45µs

Table 2 : Rats instruction counts for sending and receiving a
simple datagram, with m words of metadata and d words of
data. Instructions labelled on-cp are on the critical path, ones
labelled off-cp are not. The case labelled 12+16 msg is a 16-
byte message with 12 bytes of metadata; 44+16 has a full
return ticket in its 44 bytes of metadata.

Simple datagram — Direct I/O — — DMA —

function on-cp off-cp on-cp off-cp

sender

send 10 10

sendmsg 67+3(m+d)/4 10 88+3m/4 7

send total 77+3(m+d)/4 10 98+3m/4 7

12+16 msg 1.04 µs 0.11µs 1.13µs 0.07µs

44+16 msg 1.29 µs 0.11µs 1.39µs 0.07µs

receiver

poll 28 4 28 4

process_arrival 39 39

recv 14 22 14 22

receive total 81 26 81 26

receive total 0.86 µs 0.28µs 0.86µs 0.28µs

both
grand total 158+3(m+d)/4 36 179+3m/4 33

12+16 msg 1.90 µs 0.39µs 1.99µs 0.35µs

44+16 msg 2.15 µs 0.11µs 2.25µs 0.35µs

that provides the last, allowing the interconnect
designers to optimize for performance rather than high-
level protocol support: [Davis92] argues that an
adaptive-routing network can achieve roughly double
the throughput of a non-adaptive one.

4.2 The hardware prototype
We are building a hardware prototype based on the
Myrinet interconnect, in cooperation with the University
of California at Berkeley. The Myrinet switch is a
wormhole router configured as a non-blocking 8×8
crossbar. It provides 80MB/s of bandwidth per port,
simultaneously in each direction, with about 0.5µs of
switching latency. Myrinet’s LANai version 3 network
interface chip contains three DMA units (inbound from
the switch, outbound to the switch and to or from host
memory), a 32-bit programmable processor, and on-card
static memory (SRAM).5

We used the LANai chip and SRAM to prototype the
Hamlyn design by microcoding the LANai to emulate a
Hamlyn interface. In order to determine timings, we
built a cycle-counting instruction-set simulator that
included detailed models of the interface card, the host
bus, and SRAM contention.
We consider the following basic cases: direct send of a
short, single-packet message, both with and without
updating a word in host memory to indicate that the
message has been sent; a DMA send of a long message;
fast inbound receive of a small packet with no
notification; and reception of an inbound packet with
notification to a busy-waiting host process.
In what follows, we use an HP9000 Series J200 as a host:
it runs at 120MHz, and has a GSC+ I/O bus that runs at
40MHz connected to a 120MHz processor bus. We assume
there is no additional resource contention for buses
beyond that intrinsic to the interface card design; that
both the host and LANai processors are in busy-wait
loops at the appropriate points (i.e., there isn’t anything
else going on in the system); Hamlyn protection keys are
32 bits long; and that no errors occur.
The numbers we report are in both 25ns LANai clock
ticks and microseconds. Tables 3 and 4 summarize our
results for single-packet messages, Table 5 for a large
message transfer using 512-byte packets.
If we combine these numbers with those for the Rats
software layer, we see total times of 8.8µs for an
application-to-application send + receive of a 16-byte
tagged data message, and 42.2µs for a round-trip that
moves a 512-byte datagram and returns a 16-byte
acknowledgment. Even this simple data-transfer
protocol achieves a bandwidth of 12.1MB/s, but
pipelining sends or sending larger messages makes it
easy to achieve much higher numbers: 27.0MB/s with
pipelined 512-byte messages, 49.2MB/s with 4KB

5. Performance for the older LANai 2 interface is 2–3 times worse than
for LANai 3 because the older processor has only a 16-bit CPU and is
less able to overlap data-transfer and control operations.

9

transfers, and 67.8MB/s with 1MB transfers. This shows
that we can achieve both very low latencies and very
high bandwidths with the same architecture.

The cut-over point between direct I/O and DMA is a
function of the specific interface hardware and low-level
bus protocols. For the design we describe here, we find

a. This is the GSC+ bus time; it becomes 18d/32 for 32-byte payloads and
larger.

a. This is overlapped with the LANai processor loading the packet-header:
send-packet can commence as soon as both header and data are loaded.
The payload-loading term dominates for payloads larger than ~60 bytes.

b. The d/2 term is the cost to move data across the 80MB/s Myrinet link: 6.4µs
for 512 bytes.

c. The DMA engines cycle-steal from the LANai processor’s access to the
SRAM. For d>=284, the effect is that the processor runs at half speed.

Table 3 : details of Myrinet LANai 3 interface card costs
when processing fast-path Hamlyn messages with d bytes
of payload data + metadata. Numbers are given in both
25ns LANai 3 cycle counts and microseconds. Items in
[square brackets] are off the critical path. “Total” values are
critical-path values for 16-byte messages.

Direct IO of small message
 LANai
cycles

 time (µs)

sender

send packet 81 + d/2 2.03 + 0.013d µs

notify host [102] [2.55µs]

total 89 2.23µs

switch 20 0.5µs

receiver

link to interface 71 + d/4 1.78 + 0.006d µs

interface to hosta 14d/16 0.022d µs

notify host [89] [2.23µs]

total (no recv notify) 89 2.23µs

total (with recv notify) 178 4.45µs

all
total (no recv notify) 198 4.96 µs

total (with recv notify) 287 7.18 µs

Table 4 : details of Myrinet LANai 3 interface card costs when
processing Hamlyn messages from the host RAM by DMA with
d bytes of payload data + metadata. Timings are given in
both 25ns LANai 3 cycle counts and microseconds. Items in
[square brackets] are off the critical path. “Total” values are
for a 512-byte message and include host notification of
message arrival. These values assume no cut-through at the
LANai card on sending.

DMA of large packet LANai cycles time (µs)

sender

start data to card 106 2.65

load payloada 18d/32 0.38 + 0.014d

send packetb 21 + d/2 0.53 + 0.013d

notify host [102] [2.55]

512-byte total 671 16.78

switch 20 0.5

receiver

link to interfacec 71 +
min(71, d/4)

1.78+
min(1.78, 0.006d)

interface to host 59 + 18d/32 1.82 + 0.014d

notify host 89 2.23

512-byte total 578 14.45

all 512-byte total 1269 31.73

DMA requests break even for a data transfer of only 30
bytes or more.
Projecting what could happen if we were to embed the
Hamlyn design in a set of state machines, but keep the
same basic architecture as the Myricom card (i.e., one
DMA engine between host RAM and on-board SRAM, and
two DMA engines between the SRAM and the external
link), we believe that we could cut the times down to
close to the sum of:

• a GSC+ bus cycle to move the “start transmission”
request to the interface;

• the time to assemble and transmit the header;
• the time to traverse the switch;
• the time to read the header at the receiving interface;
• and the time to pipeline the data through the two

I/O buses, the interfaces, and the switch chip.
Putting all of this together gives us a best-possible
hardware time of about 46+18d/32 LANai cycles, or
1.15 + 0.014d µs—this system would be GSC+ limited for
large transmissions. The best-case bandwidth achieved
under these assumptions is 71.1MB/s; perhaps even
more interesting is that 64-byte packets achieve more
than half of this (41.3MB/s) while 512-byte packets get
over 90% of it (65.2MB/s). Since even the LANai design
is largely bus-limited at large transfer sizes, the main
advantage of moving to the state-machine
implementation is reduced latency. Assuming the same
Rats layer, we reduce the application-to-application 16-
byte send + receive time to only 3.0µs, split roughly
evenly between hardware and software.

Table 5 : details of Myrinet LANai 3 interface card costs when
processing a large multi-packet message with d bytes per
packet of payload data + metadata, and Nd total bytes.
Timings are given in both 25ns LANai 3 cycle counts and
microseconds. Items in [square brackets] are off the critical
path. “Total” values are critical-path times for a 1MB message
sent with 512-byte packets (N=2048). These values assume
no cut-through at the LANai card on sending.

DMA of large message LANai cycles time (µs)

sender

start data to card 106 2.65

1st load payload 18d/32 0.38 + 0.014d

(N-2) load/send (N–2)×18d/32 0.014 (N–2)d

last send packet 21 + d/2 0.53 + 0.013d

notify host [102] [2.55]

1MB/512-byte total 589.9K 14.75ms

switch 20 0.5

receiver

link to interface 2×71 3.56

1st interface to host 59 + 18d/32 1.82 + 0.014d

(N–1) packets to host (N–1)×18d/32 0.56(N–1)d

notify host 89 2.23

1MB/512-byte total 590.1k 14.75ms

all 1 MB/512-byte total 590.1k 14.75ms

10

5 Related work
There has been a lot of work in the field of interface
design for high-speed interconnects. Here is a short
summary of what we consider most relevant to the
Hamlyn design:

• OS/360 provided variants of the put and get file-
system calls that avoided data copying by having
the OS specify the location of the buffer to use,
rather than the application [Clark66, Belady81]. This
is similar to the Rats library’s supplying data
pointers, rather than copying data to a network
buffer in the OS, as UNIX applications often do.

• SHRIMP [Blumrich94] is a low-latency remote-
memory-access scheme. It uses local virtual-
memory protection algorithms to control access to a
portion of I/O space that is mapped onto similar
memory at other machines. As a result, it doesn’t
have the notification schemes we provide, nor can it
cope with out-of-order packet delivery.

• Active messages [vonEicken92, vonEicken94,
Martin94] provide a set of arrival semantics for
packets by including the address of a function to call
in each message. The function is typically invoked in
a restrictive environment, with no protection
barriers around it.
We believe that a variant of Active Messages is a fine
thing to layer on Hamlyn, and plan to do so.
However, much of Hamlyn’s value is its hardware
support for message-reassembly, inter-application
protection, and smart notifications; the traditional
active message model does none of these, leaving
them to be added on top of the underlying
mechanism.6

On the other hand, we believe that Active Packets
would not be a good idea: the context-switches
would prove too expensive. Indeed, the current
trend in processor design seems to be towards ever-
larger amounts of processor state, which will make
this more costly still. Hamlyn addresses this concern
by automating packet-reassembly in hardware.

• Cranium [McKenzie94] is almost a proper subset of
Hamlyn, and shares many of its design goals and
approaches. (We note that it was designed two years
after Hamlyn.) The main differences between the
two is that the Cranium design makes a few trade-
offs in favor of simplicity at the cost of less flexible
protection, and it allows receiver-resource overruns
in certain circumstances. For example, Cranium
supports an “append to message-area” operation for
incoming packets, which can provoke the kind of
receiver buffer overrun we wanted to avoid. (We
agree that it is an attractive function for certain
limited uses, and considered adding it to Hamlyn.

6. We understand that Alan Mainwaring at UC Berkeley is working on
adding protection to Active Messages. Frans Kaashoek reported on
relaxing locking constraints in an Active Message implementation at
the 6th SIGOPS European Workshop, Dagstuhl, Sept. 1994.

However, we decided against it because of the
dangers it represented, and its limited
applicability—for example, messages have to fit in a
single packet.)

• Various shared-memory models, including Alewife
[Kranz93] and Typhoon [Reinhardt94] provide a very
different programming paradigm, and they require
explicit processor support. Hamlyn does not—it can
fit on a standard I/O bus.

6 Summary
Based on observations about the nature of modern
multicomputers interconnects and the nature of
software for such machines, the Hamlyn interface
provides message passing with a combined hardware
and software cost of a few microseconds, while
providing full inter-application protection and resilience
in the face of nodes that do not fail gracefully. This paper
showed how we achieve this; including a description of
trade-offs that we can make (and have made) in the
design, together with detailed performance data.
The Hamlyn interface architecture is optimized for
closely-coupled multicomputer systems. It gives better
performance than loosely-coupled clusters of
autonomous computers, and much better fault tolerance
than shared-memory systems. It also provides inter-
application protection at very low cost. All these needs
must be addressed if large-scale parallel machines are to
make a significant impact on general-purpose
computing. The Hamlyn architecture is an important
step in that direction.
The Hamlyn interface provides necessary and—we
believe—sufficient, mechanisms to let application
software manage most aspects of message
communication. Thanks to this, it offers outstanding
performance while retaining full protection against
erroneous or malicious applications. This seems to be a
significant advance in the state of the art.

References
[Belady81] L. A. Belady and R. P. Parmelee, and C. A.

Scalzi. The IBM history of memory management
technology. IBM Journal of Research and Development,
25(5):491–503, September 1981.

[Blumrich94] Matthias A. Blumrich, Kai Li, Richard
Alpert, Cezary Dubnicki, Edward W. Felton, and
Jonathan Sandberg. Virtual memory mapped
network interface for the SHRIMP multicomputer.
Proceedings of 21st International Symposium on
Computer Architecture (Chicago, IL). Published as
Computer Architecture News, 22(2):142–53.
ACM/IEEE, 18–21 April 1994.

[Boden95] Nannette J. Boden, Danny Cohen, Robert E.
Felderman, Alan E. Kulawik, Charles E. Seitz,
Jakov N. Seizovic, and Wen-King Su. Myrinet: a

11

Gigabit-per-second local area network. IEEE Micro,
pages 29–36, February 1995.

[Clark66] W. A. Clark. The functional structure of
OS/360: part III, data management. IBM Systems
Journal, 5(1):30–51, 1966.

[Corbett95] Peter Corbett, Dror Feitelson, Sam Fineberg,
Yarsun Hsu, Bill Nitzberg, Jean-Pierre Prost, Marc
Snir, Bernard Traversat, and Parkson Wong.
Overview of the MPI-IO parallel I/O interface. 3rd
Annual Workshop on I/O in Parallel and Distributed
Systems (IOPADS’95) (Santa Barbara, CA), pages 1–15,
25th April 1995.

[Davis92] Al Davis. Mayfly: a general-purpose, scalable,
parallel processing architecture. Lisp and Symbolic
Computation 5(1–2):7–48, May 1992.

[Karamcheti94] Vijay Karamcheti and Andrew A. Chien.
Software overhead in messaging layers: where does
the time go? Proceedings of International Conference on
Architectural Support for Programming Languages and
Operating Systems (San Jose, CA). Association for
Computing Machinery, 5–7 October 1994.

[Kranz93] David Kranz, Kirk Johnson, Anant Agarwal,
John Kubiatowicz, and Beng-Hong Lim. Integrating
message-passing and shared-memory: early
experience. Proceedings of 4th ACM Annual Symposium
on Principles and Practice of Parallel Programming, May
1993.

[McKenzie94] Neil R. McKenzie, Kevin Bolding, Carl
Ebeling, and Lawrence Snyder. Cranium: an interface
for message passing on adaptive routing networks.
Proceedings of Parallel Computer Routing and
Communication Workshop (Seattle, WA), pages 266–80,
May 1994.

[Reinhardt94] Steven K. Reinhardt, James R. Larus, and
David A. Wood. Typhoon and Tempest: user-level
shared memory. Proceedings of 21st International
Symposium on Computer Architecture (Chicago, IL).
Published as Computer Architecture News,
22(2):325–36. ACM/IEEE, 18–21 April 1994.

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-
to-end arguments in system design. ACM Transactions
on Computer Systems, 2(4):277–88, November 1984.

[vonEicken92] Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, and Klaus Erik Schuser. Active
messages: a mechanism for integrated
communication and computation. Proceedings of 19th
International Symposium on Computer Architecture
(Gold Coast, Australia), pages 256–66, 19–21 May
1992.

[Wilkes92] John Wilkes. Hamlyn—an interface for sender-
based communications. Technical report
HPL–OSR–92–13. Operating Systems Research
Department, Hewlett-Packard Laboratories, Palo
Alto, CA, 30 November 1992.

The authors can be contacted as follows:
greg_buzzard@imsystems.com, and {jacobson, marovich,
wilkes}@hpl.hp.com. Please address correspondence
concerning the paper itself to David Jacobson.

